Performance Bounds for
Flow Control Protocols!

Rajeev Agrawal, R. L. Cruz, Clayton Okino, and Rajendran Rajan 2

April 1998

Abstract

In this paper, we discuss a simple conceptual framework for analyzing the flow of data in
integrated services networks. The framework allows us to easily model and analyze the
behavior of open loop, rate based flow control protocols, as well as closed loop, window
based flow control protocols. Central to the framework is the concept of a service curve
element, whose departure process is bounded between the convolution of the arrival
process with a minimum service curve and the convolution of the arrival process with
a maximum service curve. Service curve elements can model links, propagation delays,
schedulers, regulators, and window based throttles. The mathematical properties of
convolution allow us to easily analyze complex configurations of service curve elements
to obtain bounds on end-to-end performance. We demonstrate this by examples, and
investigate tradeoffs between buffering requirements, throughput, and delay, for different

flow control strategies.

Keywords: Guaranteed service, adaptive service, network calculus, service curve, reg-

ulator, scheduler, delay, burstiness, queueing.

!Research supported in part by the National Science Foundation under grants NCR-93-05018 and NCR 94-15684,
the Army Research Office under grant FRI DAAH04-95-1-0248, the Air Force Office of Scientific Research under
grant F49620-95-1-0538, and by the Center for Wireless Communications at UCSD.

2Corresponding author. Mailing address: IBM T. J. Watson Research Center, Hawthorne, NY, 10532, e-mail:
raju@watson.ibm.com



I. INTRODUCTION

In this paper, we present and analyze two service categories — guaranteed service and adaptive
service — in integrated services networks. The guaranteed service is designed for applications with
stringent delay and loss requirements on a per-packet basis, that are able to specify reasonable
upper bounds on their traffic. Typical applications targeted by such a service include audio and
video teleconferencing, as well as playback. The adaptive service, on the other hand, is intended
for applications such as web browsers that could have a minimum bandwidth requirement, relaxed
delay requirements and use window flow control to obtain bandwidth unused by the network. These
service categories are in the same spirit as those adopted by the IETF Int-Serv working group
(23, 30].

We study provisioning requirements and characterize performance for guaranteed and adaptive
sessions. A typical session of either service category traverses a network composed of heterogenous
elements. In Section II, we first evolve a simple mathematical framework to capture session dynamics
at such diverse elements. The basis of this framework is an operation called convolution, through
which we define a service curve element — a generic device that can equally well be used to describe
the operation of a variety of network elements such as links, access regulators, and routers which use
link scheduling mechanisms to arbitrate amongst sessions. In this model, minimum service curves
capture a lower bound on the amount of service allocated by the network element to a given flow,
while mazimum service curves describe a similar upper bound. We conclude Section II by studying
the performance characteristics of a flow traversing a single service curve element, and obtain upper
and lower bounds on buffering requirements, delay and output burstiness of the flow.

In Section III, we describe the guaranteed service. Briefly this service is as follows. The source
describes the offered traffic in terms of a profile or envelope and requests a lossless service with a
fixed upper bound on end-to-end delay. Each of the routers on the path of the session allocates a
certain amount of link bandwidth and buffers in order to satisfy this session’s request. The routers
may reshape the session to its requested profile, and hence the session does not have any assurances
on how traffic in excess of the profile will be treated. We show that a unicast guaranteed session may

be modelled as a flow traversing a series of service curve elements. Such a series, may be collapsed



into a single network element, thereby enabling us to apply the single service element results to
obtain end-to-end bounds on queue lengths, delay and output burstiness for such a session, and
use these to study the use of regulators in reducing buffering requirements at intermediate network
elements. The idea of collapsing the model of a network for a single session to a single network
element for purposes of end-to-end analysis was first proposed by Parekh and Gallager [20, 21, 22],
in the context of a specific scheduling algorithm.

In Section IV we introduce the adaptive service category. Such a service is useful for applications
such as file transfers and web browsing that can use more bandwidth when it is available in the
network, while reserving a minimal level of service at all times. In order to avail of excess bandwidth,
such sessions require feedback from the network. In this case, the session topologies may be modelled
as a cycle of service curve elements, with a throttle that controls access to the cycle. Our formulation
allows us to derive novel pathwise performance bounds for such networks. In particular, we consider
unicast as well as multicast sessions, with end-to-end and hop-by-hop window flow control. We
show how a cycle of service curve elements may be collapsed to a single service curve element. This
allows us to obtain the relationship between the buffering requirements at network elements and

the performance achievable by the session for the above mentioned session topologies.
II. MODELLING AND ANALYSIS OF NETWORK ELEMENTS

In this section, we model a network element — be it a T-1 line, a router, or an access regulator — in
terms of the transformation effects the element has on the stream of packets belonging to a session.
We present a mathematical model, called a service curve element, which specifies how the arriving
stream of packets (the arrival process) is converted into a departing stream (the departure process).
We show that the service curve element can effectively model a variety of network elements. In
the next section, we describe how service curve elements can be concatenated to model network
dynamics as experienced by a session.

To this end, we define a process to be a function of time A(t). Formally, A is a mapping from the
real numbers into the extended non-negative real numbers, i.e. A: R — IR, U {+00}. A process

could count the amount of data arriving or departing to/from some network element, and in this



case we may call the process an arrival process or a departure process, respectively. All processes
are assumed to be non-decreasing and right continuous. We shall often consider what we call causal
processes, which are simply processes which are identically zero for all negative times. For example,
if A is a causal arrival process to a network element, then A(t) is equal to the amount of data (in

bits) arriving to the network element in the interval (—oo,t], and A(t) = 0 for all £ < 0.

A. Service Curve Elements

In order to define service curve elements, we first introduce an operation called convolution. Given
two processes A and B, the convolution of A and B is defined to be the function A * B : R —
IR, U {400} such that

Ax B(t) := 7}21%{14(7) +B(t—1)}.

It is easy to verify that AxB is a process, i.e. it is non-decreasing, and right continuous. Furthermore,
if A and B are causal, then A x B is causal. A graphical interpretation of convolution is illustrated
in Figure 1 and discussed below.

Suppose that the arrival of traffic to a network element is described by the cumulative arrival
process A. Suppose S and S are causal processes. The network element is a service curve element
with minimum service curve S (resp. mazimum service curve S) if the corresponding departure
process D from the element satisfies D > A« S (resp. D < A*S‘)l. In the next subsection, we show
that these models allow us to describe the dynamics of a variety of network elements, including for
instance, a fixed propagation delay, an access regulator or a queueing server with a link scheduling
mechanism.

In order to make sense of the definition of service curve elements, it is important to visualize the
concept of convolution. To this end, we now discuss a graphical interpretation. For a fixed value of
7, the graph of A(7) 4+ B(t — 7) versus t is obtained from the graph of B(t¢) by horizontally shifting
it by an amount 7 and vertically shifting it by an amount A(7). In other words, we translate the
graph of B(t) by moving the origin of the graph onto the point (7, A(7)). By taking the pointwise

minimum of all such translations of the graph of B onto the graph of A, we obtain the convolution.

'In this paper, all inequalities involving functions are defined in a pointwise sense.



A(T) + 4 R o
©r e S ARB(Y)

I t e

T

Fig. 1. Graphical representation of convolution A % B.

This is illustrated graphically in Figure 1.

With this graphical interpretation, it can be seen (and easily verified formally) that the convolu-
tion operator is commutative and associative ,i.e. AxB=BxAand (AxB)«C = Ax(BxC).
Furthermore, if BAC' denotes the pointwise minimum of B and C, then Ax(BAC) = (AxB)A(BxC).
In other words, convolution is distributive with respect to the minimum operator. The identity

element ¢ of this operator that satisfies A x 6 = 0 *x A = A may be verified to be

0 t<0
i(t) ==
oo t>0.

Defining d4(t) := 6(t — d), note that 6, is a “shift element,” i.e. for any process A we have
A xd4(t) = A(t — d). If B is a causal process then B < § and hence A« B < Ax¢§ < A for any

process A.

B. Modelling Network Elements as Service Curve Elements

In this subsection, we describe four types of service curve elements - delay element, link, scheduler,
and regulator. Using combinations of the four service curve elements, a variety of network elements
may be modelled for a guaranteed service session, as we demonstrate in Example 2 at the end of

this subsection.



1. Delay FElements

Consider a traffic stream passing through a network element, where A and D denote the arrival
and departure processes, respectively. Suppose that the delay is bounded above by d,,.. and below

by dnin in the sense that
A(t — dpaz) < D(t) < A(t — dppyp) for all t € IR.
Recalling the shift element 6, defined earlier, this is equivalent to

Axbq,,, <D < Axdy

min °

Thus, the above network element is a service curve element with minimum service curve dg4,,,,
and maximum service curve d4_, . Note that any physically realizable network element is a service
curve element with a maximum service curve of J, since D < A = Ax{. For a constant propagation
delay element the minimum and maximum service curves are identical, namely d4,,,,, Where d,,,

is the value of the propagation delay.

2. Links

Suppose a link has a capacity of C bits per second, in the sense that D(t) — D(7) < C(t — 1) for
all 7 < t. Since D < A, this implies that D(t) < A(r) + C(t — 7), and hence that D < A x R¢,
where Rg(t) = Ct for t > 0 and Rc(t) = 0 for ¢ < 0. Thus, a network element with a capacity
of C bits per second is a maximum service curve element with maximum service curve Rc. If the
session under consideration is the only session on this link then the above inequality holds with
equality and the network element guarantees both a maximum and minimum service curve of R¢.
Recognize that this is equivalent to the behavior of a fixed rate server.

In general, given a network element that guarantees a maximum service curve of S, note that the

maximum throughput is upper bounded by the asymptotic slope of S, i.e.

m@ < ELSU)
t—oo t—o00 t
< A0 +50)
t—o00 t
_ m 2@
t—soo



3. Schedulers

Minimum service curves may also be used to characterize the level of service provided by a
link scheduler to each of the sessions sharing the link. Such service characterization may reflect
active scheduler involvement in isolating flows (as in virtual clock, generalized processor sharing
(GPS), packet GPS, self-clocked fair queueing, weighted round-robin, etc.) or may be obtained
through a careful accounting of the service capacity and arrival constraints on other connections
(as when several burstiness constrained flows share a FIFO or priority scheduler). Service curves,
with a somewhat different definition than in this paper, were introduced by Parekh and Gallager
[21, 22] to study generalized processor sharing (GPS). The idea of using a service curve as a general
characterization of a scheduling policy was proposed by Cruz [7], and refined in [8]. Closely related
service definitions, which are a special case of the service curve framework in this paper, were made
by Stiliades and Varma [26], Hung and Kesidis [16], and Goyal, Lam, and Vin [15]. These three
latter definitions are essentially equivalent, and have recently been considered by the integrated
services working group of the IETF. We call them “latency rate” service curves, following the
terminology of Stiliades and Varma. It should be noted that the minimum service curve definition
of this paper was concurrently proposed by Agrawal and Rajan [1], Le Boudec [18], and reported
in the thesis of Sariowan [25].

We now discuss the latency rate service model adopted by the integrated services working group of
the IETF. Consider the series combination of a fixed rate server with capacity p bits per second and
a constant delay element with a delay of d seconds. If the arrival process is A, then it follows that the
corresponding departure process from the fixed rate server is A x R,,, and hence the corresponding
departure process from the delay element is (A R,) x4 = A* (R, *d4). Thus, if a network element
serves data at least as fast as this series combination, it guarantees a minimum service curve of
R, *04. The parameter d is called the latency and the parameter y is called the rate. Latency rate
service curves bound the dynamics of a number of popular scheduling mechanisms — self-clocked
fair queueing [14], worst-case-fair weighted-fair queueing [2], and virtual clock [33], for example.

In general, given a minimum service curve S, it is possible to synthesize a scheduling algorithm

so that a server guarantees the service curve S to a given traffic stream. This philosophy is taken



in [25] [24] [27], and is closely related to the “Earliest Deadline First” (EDF) scheduling policies
considered in [11] and [19].

4. Regulators

Regulators are devices used to shape or smooth traffic to an envelope, and may be used to
model devices such as leaky buckets that enforce traffic contracts at access points to the network
or subnetworks. Further, regulators may also be used within a network, for instance, when link
scheduling is performed using a rate controlled service discipline [31, 32] which uses regulators to
isolate incoming traffic streams before arbitrating between competing streams through a scheduling
mechanism. This use of regulators has the additional advantage of reducing jitter and buffering
requirements at downstream network elements [6, 12], and is related to the stop & go scheduling
policy proposed by Golestani [13].

In order to formally define a regulator, it is first neccessary to introduce the notion of an envelope.
A process F is said to be an envelope for the process A if for all 7 < ¢t we have A(t)— A(7) < E(t—71),
or equivalently A < A x E. The concept of an envelope was proposed and developed in [5].

If F is an envelope for A then E' A J is a causal envelope for A, since any process A is non-
decreasing?. If E is a causal envelope, note that E < §, and hence A* E < Ax§ = A. Thus, if E
is a causal envelope for A, then A = A x E.

A process FE is said to be sub-additive if for all t, 7 € R we have E(7)+ E(t —7) > E(t). Thus, if
FE is a sub-additive process, then F x E > E. We will often assume that envelopes are subadditive,
and given the definition of an envelope, this is a natural assumption [3]. A simple example of an
envelope is the (o, p) envelope with E(t) := o + pt,t > 0.

The (o, p) regulator is a device that shapes traffic to a (o, p) envelope, i.e., it holds up arrivals just
long enough to ensure that the departing stream satisfies D < D x E, where E is a (o, p) envelope.
A popular implementation of a (o, p) regulator is called a leaky bucket [29], where tokens arrive
into a bucket of size o at constant rate p. Departures occur only when tokens are available, and
when they occur, cause the contents of the token bucket to be decremented by an equal volume.

The (o, p) regulator was introduced by Cruz [5, 8] and further generalized by Anantharam and

2Tt will be occasionally convenient to consider non-causal envelopes.

7



Locda
Router

FTP T_'l Client
Server Line _

T-1
Line

Fig. 2. A Single Hop File Transfer Session.

Konstantopoulos [17].
The departure process D of a regulator with causal sub-additive envelope E and arrival process

A satisfies the following conditions:
R1. FE is an envelope for D, i.e. D < D x E.

R2. D<A

R3. D is the (pointwise) maximal function satisfying R1 and R2.

The departure process satisfying the above conditions R1-R3 is explicitly obtained in the following

theorem.

Theorem 1: There exists a unique D satisfying R1-R3 and is given by D = A x E.

Proof: From the sub-additivity of E it follows that D' := Ax E < A% (Ex E) = (A% E) %

E = D' x E. Thus, E is an envelope for D'. Since F is causal, we have F < ¢, and hence
D':=AxE < Ax6 = A. Thus, D' satisfies R1 and R2. Let D" be any departure process that
also satisfies R1 and R2. Then D" < D" x E < Ax E = D', and consequently, D' satisfies R3. [
Thus the envelope of a regulator is both its minimum and maximum service curve. Essentially

the same result has been concurrently reported in [1], [4], and [25].

Ezample 2 (Modelling Networks with Service Curve Elements): Consider the example of a Guar-
anteed Service session from a source to a destination across one router depicted in Figure 2. Suppose

that the session has a traffic profile with burst size 5 Kb, and a token rate of 200 Kbps. The session

8



Access
Regulator | | Router | |
Source | | Destination
S e e A e P = I =
(@, p) constant delay latency constant delay
envelope rate link element raie service  geink element
curve
) element
traffic
entering
network

Fig. 3. Service Element Model for FTP session.

traverses a 1.5 Mbps T-1 link with a propagation delay of 3 ms before being forwarded on to the
second link by the router. We assume that the scheduling policy in the router can be modelled as
a latency-rate server, with a latency of 1 ms and rates of 300 Kbps®. The second T-1 link has a
propagation delay of 2 ms. We may model this session as a series of service curve elements as shown
in Figure 3. In Figure 3, the source traffic is modelled as emanating from an access regulator, which
has a (o, p) envelope with parameters ¢ = 5 Kb, p = 200 Kbps. The first T-1 line is modelled as a
delay element of 3 ms followed by a constant rate server of 1.5 Mbps, while the second is a delay
element of 2 ms followed by the same constant rate server. Finally, the operation of the router is
modelled by a latency rate (scheduler) service curve with latency 1 ms and a rate of 300 Kbps. We

defer performance calculations until later in the paper (See Example 12).

C. Performance bounds for single service curve elements

In this subsection, we derive delay bounds, buffer requirements and departure process envelope
for a session traversing a single service curve element. To aid us in proving these bounds we first

describe an operation called deconvolution.

1. Deconvolution

Given an envelope F, it is common to consider the class of all processes for which F is an envelope.

Conversely, given a causal process A, it is also useful to consider the smallest envelope E for A.

3The larger server rates assure a smaller end-to-end delay for the session.



This is clearly given by
E(t) =sup{A(t+71)— A(1)} .

TEIR

Note that E above is the smallest process such that A(t + 7) — A(7) < E(t) for all 7,t € R.
More generally, given two processes A and B, where B is causal, it is useful to consider the smallest
process H such that A(t +7) — B(7) < H(t) for all ¢,7 € IR. The smallest such process is clearly
given by H = A @ B, where*

A @ B(t) =sup{A(t+7) — B(7)}.

TR
Note that the condition above that A(t + 7) — B(7) < H(t) for all ¢,7 € R is equivalent to the
condition that A(t) — B(7) < H(t — 1) for all £,7 € IR. In turn, it is easily seen that this condition
is equivalent to H x B > A. Thus, A ©® B is the smallest process H such that H x B > A. For this
reason, we call A @ B the deconvolution of A and B, or A deconvolved with B.
It can easily be verified that (A @ B) @ C = A©® (B x C) for any processes A, B, and C.

Furthermore, the following lemmas, proven in the Appendix, will be useful later.

Lemma 3: For any processes A,B,C, where C' is causal, there holds Ax (B C) > (AxB)oC.

Proof: See Appendix. O

Lemma 4: For any causal process B, the process B @ B is sub-additive.

Proof: See Appendix. O
A consequence of the last lemma is that the smallest envelope E of a given process A, A © A, is

sub-additive. This fact was first observed by Chang [3].

2. Delay Bounds, Buffer Requirements, and Departure Traffic Characterization

Throughout this subsection we will consider a service curve element with arrival process A and
departure process D. We will assume that E is an envelope for the arrival process A, and that

the minimum and maximum service curves are S and S, respectively. Most of the results of this

4Tt is easy to verify that A @ B is a process, i.e. it is non-decreasing, right continuous, and non-negative since B

is causal.

10



Arrivad
Envelope

E(t)

Maximum Delay d,,.,

A
\

Buffer Requirement Service
Bmax Curve
S(1)

Y

Fig. 4. The worst case delay and buffer requirements.

subsection appeared in [1], [18], [25], and in an earlier form in [8]. The proofs here are considerably
more streamlined, and are adapted from [9].

Under these conditions, we first obtain bounds on the delay through the network element. Let
Amae e the maximum horizontal distance between E and S. In other words, d,,,; is how far the

graph of ' must be shifted to the right so that it lies below S:
ez :=nf{d:d >0, Exdy < S} (1)
It is easy to verify that E % d,4,,, < S. Figure 4 is an example illustrating d,q5-

Proposition 5: The service curve element has a delay of at most dez, i.6. D(t) > A(t — dppag) for

all ¢.

Proof: Using the definition of a minimum service curve, the fact that F * d4, ,, < S, the

definition of d,,.,, associativity, and the definition of a traffic envelope, we have

D > AxS

> Ax(Exdg,,,)

(Ax E)*0q,,,

v

A x 5dm(w .

11



O
A lower bound on the delay can be easily obtained from the maximum service curve. Towards
this end, let dmi, be the largest value of ¢ such that S(¢) < 0, i.e. dmin = sup{t : S(¢) = 0}. Thus,

we have S(t) = 0 for t < dy;in and hence §y,, > S.

Proposition 6: The service curve element has a delay of at least dpn, i.e. D(t) < A(t — dmin) for

all ¢.

Proof: Using the definition of a maximum service curve and the definition of d;, we have

D<AxS<Axy O

Next, we bound buffer requirements. Towards this end, let b,,,, be the maximum vertical distance

between E and S, i.e.
bmaz :=sup{E(t) —S(t):t e R} = E© S(0) . (2)
An example of by, is illustrated in Figure 4.

Proposition 7: The amount of data stored at any time in the network element is at most b,,,,

ie. A(t) — D(t) < bpag for all ¢.

Proof: Note that E < byj,e: + S. Using the definition of a traffic envelope and a minimum

service curve, we thus have

A(t) — D(t)

IA

Ax E(t)— AxS(t)

IN

A % (bpaz +5)(t) — A% S(t)

bmar + A% S(t) — Ax S(t)

bma:c .

O
Next, we find a traffic envelope for the departure process D in terms of the traffic envelope for

the arrival process and the maximum service curve S.

Proposition 8: The process E,,; := (E *S) @ S is an envelope for the departure process®.

5Note that E,; is not necessarily causal. Of course E'

out = Eout N6 is a causal envelope for the departure process.

12



Proof: Tt suffices to show that D < D x E,,,;. We have

DxE,; = Dx((ExS)2S)

v

(AxS)x((ExS)2S)

= Ax((ExS)2S8)*5)

v

Ax(Ex*S)

|

(AxE)* S

v

AxS

Vv

D .

O
In case the network element in question is a regulator, we obtain the following corollary. In a

discrete time context, this result was previously obtained by Chang [4].

Corollary 9: Suppose FE;, is an envelope for the arrival process to a regulator with causal envelope

E,¢y. Then E,,; is an envelope for the departure process, where E,,; = E;;, * E,q.

Proof: Applying Proposition 8 and observing that the envelope FE,., is the minimum and
maximum service curve of the regulator, it follows that the departure process has envelope (E;, *
Ereq) @ Ereg. On the other hand, using Lemma 3 and the sub-additivity of E,., we have (Ej, *
Ereq) @ Ereg < Eip * (Ereg @ Ereg) < Eip % Epeg. O

III. GUARANTEED SERVICE SESSIONS

A session belonging to the Guaranteed Service category specifies the offered load in terms of
an envelope (a (o, p) envelope in the simplest instance), and requests a certain level of service,
quantified by a worst-case end-to-end delay requirement, and no packet loss. For the call to be
setup successfully, network resources are reserved to ensure the requested level of performance. We
model such a session as a feed-forward network of service curve elements. Thus, a single element
may represent a fixed propagation delay, a queueing server, or a router. The principal advantage

of the service curve framework in analyzing such complex configurations is that we can collapse

13



the network into a single service curve element. This allows us to apply the bounds obtained for a

single element in the previous section, to analyze complex networks.

A. Composition Rule for Tandem Service Curve Elements

Consider a feedforward series of network elements, whereby data flows sequentially through a set
of network elements. In this case, a service curve of the system is obtained by convolving the service

curves of each of the network elements. This is formalized in the following :

Proposition 10: Suppose a traffic stream passes through n service curve elements in series, where
the i*" element has minimum service curve S; and maximum service curve S;, 2 = 1,2, ...n. Then the
entire system is a service curve element with minimum and maximum service curves S; * Sy *---% S,

and S; x Sy % - - - x S, respectively.

Proof: We prove the proposition for the case n = 2. The general case can then be proved by
induction on n. Let the arrival process to the system be A, and the departure process of the first
element be B. Note that B is also the arrival process to the second element. Finally, let D be the

departure process of the second element. We have

D Z B*SQ
> (AxS5)) xS,

= Ax (Sl * SQ) .
Thus, the system guarantees a minimum service curve of S7 x Sy. Similarly we have

D < BxS,
< (A%8)) %S,

= A*(Sl*)S_’Q) .

and thus the system guarantees a maximum service curve of S; * S,. O
Combining Propositions 5-10, we may obtain end-to-end performance bounds as illustrated in

the following examples.

14



Ezample 11 (Tandem of latency-rate service curve elements fed by a sigma-rho process): Consider
an arrival process constrained by a (o, p) envelope that feeds a tandem of n service curve elements.
Element £ has a latency-rate (6, ry) minimum service curve and latency rate (¢, pr) maximum
service curve, 1 < k < mn. Assume that ¢, < 0, and p < 1, < pg. Then, it is easy to verify
that the system guarantees a minimum service curve which is of the latency rate type with latency
0 =>4, 0 and rate 7 = min; <<, 7% and also a maximum service curve which is of the latency rate
type with latency ¢ = 37}, ¢, and rate p = min;<x<, pr . In this case the minimum end-to-end
delay is #, the maximum end-to-end delay is § + o/r, the end-to-end queue length bound is o + pf,

and the envelope of the departure process from the system is given by

g
p—p p—p

FO-O) A T 0), t20

Ezample 12 (Performance for Ezample 2): In Figure 3, the Guaranteed Service session is de-
picted as a (o, p) regulator followed by five service curve elements. Specifically, we have envelope
E(t) = 5Kb + 200Kb/s - t, constant rate link S;(t) = 1.5Mb/s - ¢, delay element Sy(t) = d3ms(?),
latency rate minimum service curve S3(t) = max{0,—.3Kb + 300Kb/s - ¢}, constant rate link
S4(t) = 1.5Mb/s - t, and delay element S;(t) = doms(t). This is a special case of Example 11. We
find the net maximum service curve S™(t) = Sy * Sy * Sy * S5(t) = max{0, —7.5Kb + 1.5Mb/s - t},
and the net minimum service curve S™¢(t) = Sy * Sy*S3% S, * S5(t) = max{0, —1.8Kb+300Kb/s-t},
and then the minimum end-to-end delay is d,,;, = sup{t : S = 0} = 5ms, the maximum end-to-

— 3 . netl — & _ 4l o e
end delay dyq; = inf{d : E'x §g < S™'} = 6ms + 500 Kb/s — 22.67ms , the end-to-end minimum

buffer requirement by, = F @ S5™(0) = 5Kb+200Kb/s-6ms = 6.2Kb, and the departure envelope
process Foui(t) = {4.92Kb + 300Kb/s - (t)} A {5.2Kb + 200Kb/s - (¢)},t > 0.

B. Reducing Buffering and Service Curve Requirements for Guaranteed Sessions

In this section, we investigate how in a Guaranteed Service session, we may reduce the (i) buffering
requirements at schedulers by the insertion of appropriately chosen regulators, and (ii) the minimum
service curve requirement at the individual schedulers, while preserving the end-to-end minimum

service curve.

We begin with considering regulation at the source.

Ezample 13 (“Minimum” Network Buffering): Consider a Guaranteed Service session traversing

a network which guarantees a minimum service curve of S. In order to limit the amount of data

15



in the network, the source could first pass the data through a regulator with envelope E, so that
the amount of data in the network would be no more than b,,,, = (F @ S)(0) by Proposition 7. In
order to make b,,,, as small as possible, the envelope E should be chosen as small as possible. On
the other hand, the system, including the regulator, would then have a minimum service curve of
E x S. If we desire that the service curve be unchanged with the addition of the regulator, we need

E xS > S. The minimum such envelope F is £ =S5 © S and
(SoS)*xS=S. (3)
The corresponding bound on the amount of data in the network is

bmaz = [(S®S) ®S](O)

= [S@(S*9)](0)
= sup{S(t) = S+ S(1)} - (4)

We now motivate the use of regulation inside the network.

Ezample 14 (Buffer Requirements for Network Elements in Tandem): Consider a Guaranteed Ser-
vice session that traverses a series of n service curve elements, where the i element has minimum
services curve S;. Suppose the arrival process to the first network element has envelope E. By
Proposition 7, the buffer requirement in the first network element is b1 = (E @ S1)(0). By
Proposition 8, the arrival process to the i network element has envelope E @ (S} * Sg * ...S; 1)
for i > 1. Hence by Proposition 7, the buffer requirement in the i network element is bmazi =
[(EQ(S1*Sy%...5;.1))@S5:](0) = [E@ (S1 * S %...5;)](0), which is increasing with 7. By lumping
the n network elements together and modelling them as a system with minumum service curve S,
the buffer requirement for the entire system is by, = [E @ S](0), where S =S x Sy ... S,. Note
that the buffer requirement for the system is equal to the buffer requirement for the n** network
element, i.e. bpez = bmaszn. Note further that we may have Y7 ez > bmaz, €ven though all
the bounds are achievable. The explanation is that the backlogs in the network elements cannot be

maximized simultaneously at the same point in time.

It is well known that the buffer requirements can be reduced by the insertion of appropriately
chosen regulators between the network elements without affecting the end-to-end maximum delay.

The next proposition, proved in the appendix, gives the smallest envelope that can be inserted

16



without affecting the end-to-end minimum service curve, and hence without affecting the maximum

end-to-end delay.

Proposition 15: Consider a Guaranteed Service session with source traffic constrained by a causal
envelope B, that traverses a tandem of n service curve elements, where the k™ element guarantees
a minimum service curve S. Let S := S1 % So*...%S,. Let dy,q, be the maximum end-to-end delay
encountered by the session in traversing the series of elements. Define the sub-additive envelope
E := (B%xS)o (B xS). If a regulator with envelope E is inserted before any of the network
elements, the end-to-end minimum service curve is unchanged, and hence the maximum end-to-end
delay does not increase. By the same argument reducing each of the minimum service curves Sy to

Sk * ((B*S)@ (Bx*5S)) does not change the end-to-end delay.

The next example gives an application of Proposition 15.

Ezample 16: For a tandem of n identical latency-rate (6, r) schedulers fed by a (o, p) constrained
arrival process considered in Example 11 (with p < r), the corresponding envelope E in Proposition
15 is given by E(t) = min{rt,o + pt},t > 0. The use of regulators with this burstiness constraint
give a buffering requirement of £(20) = min{2760,0 + 2pf} at element n > 2. If we used regulators
with burstiness constraint B(t) = o + pt of the arrival process, then the corresponding buffering
requirement at node m would be o + 2pfl. By the previous proposition, the use of any of either
of these regulators leaves the end-to-end delay unaltered. Both of these buffering requirements are
smaller than the original buffering requirement of o + mpf at node m, m > 2. More importantly,

they do not increase with the number of elements traversed by the session.

In this section, we saw how service curves could be used to model, analyze and provision Guar-
anteed Service sessions that provide a lossless service with bounds on the worst case end to end
delay. Further, we studied the use of regulators within the network in reducing buffering require-
ments within the network. In the next section, we study another approach for limiting buffer
requirements, namely window flow control, which allows the session to make better use of network

resources when these are idle.
IV. ADAPTIVE SESSIONS

The Guaranteed Service category is appropriate for applications which require a pre-specified

level of service for a volume of traffic that can be well characterized by an envelope. However, a

17



number of applications such as file transfers and web browsing can use more bandwidth when it is
available in the network, while requiring a minimal level of service at all times. In order to avail of
excess bandwidth, the sessions need feedback and should not be unnecessarily limited by regulation
within the network. In this section, we study a service category tailored to such applications called
adaptive service, wherein network resources are reserved to obtain a minimum bandwidth guarantee
and prevent buffer overflow, and window flow control is used to avail of excess bandwidth in the
network. We discuss the service in the context of a unicast session, model the dynamics of the
session using service curve elements, and obtain the relationship between window sizes, resource
reservation and performance for this session. We shall consider both end-to-end window flow control
as well as hop-by-hop window flow control. Finally, we end this section with a discussion of multicast

sessions with end-to-end window flow control.

A. Unicast Sessions with end-to-end windows

Figure 5 illustrates a unicast session that originates at a source and traverses multiple routers
before terminating at the destination host. In order for the source to obtain a pre-negotiated level
of service, each router must allocate buffers to prevent packet loss, as well as guarantee access
to link bandwidth through the operation of a scheduling mechanism. The destination returns
acknowledgments for each packet received, and the source uses a window of size W to control the

number of unacknowledged packets.

Router
\\\m Destination
Host

Router

Fig. 5. A unicast session with window flow control.

We model this network using service curve elements, as illustrated in Figure 6. Window flow
control is modelled through a network element called a throttle, which is controlled by a throttle

process. In particular, a throttle 7 receives traffic from an arrival process, say A7, and releases

18



this traffic according to the departure process Dy = A7 AT, where T is the throttle process that
controls the throttle. Thus the departure process of a throttle is constrained so that it is never more

than the throttle process, and the throttle buffers data, only as necessary, to meet this constraint.

Source Destination
A) Throttle (System Departure
D(t) / J j Process)
> e @
0 s (9 X0 S (9
1 2 3
W(t)
S (1) S (t) S (1)
6 5 4

Fig. 6. Service curve elements representing a unicast session with window flow control.

In the model illustrated in Figure 6, the arrival process A to the system is fed to a throttle,
and the departure process of the throttle, D, is fed to a tandem of six service curve elements.
The departure process of this tandem, B, is summed with another process W, called the window
process®, to obtain the throttle process 7' = B+ W that controls the throttle. The amount of traffic
stored in the tandem is (AAT) — B <T — B = W, so that the throttle insures that the amount of
traffic in the tandem is no more than W. Thus, the buffering requirement at each of the elements
in the tandem is at most W (t) at time ¢.

The window size can be dynamically adjusted according to any criterion, with the idea that, in
order to utilize bandwidth and buffers efficiently it is natural to decrease the window size when
the network is congested and to increase it when the network has spare resources. Thus, we may
use a TCP-type additive increase and multiplicative decrease algorithm. Suter et al. [28] consider
TCP with different scheduling and buffer management schemes to improve the fairness of TCP.
The framework is similar to the extent that we consider a combination of link scheduling and

dynamic windows. However, it differs in that we consider a lossless model, whereas TCP uses losses

6Strictly speaking, W is not a process since we do not require it to be non-decreasing.

19



explicitly to measure congestion and adjust the window size. In our case we can use some other
method to estimate available network resources, while avoiding the possibility of buffer overflow”.
For instance, we could use round-trip delays, perhaps in combination with some explicit feedback
from the network. Our framework also differs in that we may allow the scheduling parameters
and the window adjustment mechanisms to differ across sessions, resulting in different pre-defined
grades of service.

The issue of how the window process is generated is beyond the scope of this paper. We shall
only assume that B + W = T is a process, i.e. non-decreasing, and that the window process is
min

bounded below by a positive constant w™" and bounded above by w™%*:

,wm'in S W(t) S w™mer (5)

Each of the service curve elements in the tandem could represent a link with a fixed propagation
delay and maximum bit rate, or a router which provides a certain level of link bandwidth to the
session. In Figure 6, the output of the third element in the tandem is the departure process of the
system, which is fed to the destination. This departure process is also fed back toward the throttle,
and serves as a model of acknowledgments for purposes of governing the throttle. The three service
curve elements on the return path to the throttle serve as a model for delays (e.g. propagation
delays) in the return of acknowledgments to the throttle.

It is important to note that this is merely a model for acknowledgments, and that the data stream
itself does not need to return to the throttle. Only the values of the departure process are fed back
toward the throttle, which requires considerably less bandwidth than the data stream itself. Here,
for simplicity, we have assumed that acknowledgments are in the same volume as data traffic. A
more realistic assumption is to have the volume of acknowledgments be a fixed fraction of the
volume of forward traffic. It is straightforward to extend our analysis to this system.

Given the minimum and maximum service curves of the service curve elements in the tandem,
our goal is to show that the overall system is a service curve element, and find minimum and

maximum service curves for the system. Toward this end, we first find minimum and maximum

"This interesting topic is beyond the scope of the current paper, but is left for future work

20



Throttle

A(t) D()
S— —S
Source
W(t) § G
L |-

Fig. 7. Basic Model of a Closed Cycle of Service Curve Elements.

service curves of the throttle. In other words, we consider the system, called a closed cycle of service
curve elements, whose arrival process is A and whose departure process is D, the departure process
of the throttle. Once we find a minimum and maximum service curve for the closed cycle, we may
apply Proposition 10 to find minimum and maximum service curves of the overall system which
feeds the destination, by convolving the service curves of the service curve elements in the forward
path of the tandem.

By applying Proposition 10, we can collapse the service curve elements in the tandem into a single
service curve element with minimum and maximum service curve G and G, where G = S; %S %- - - S
and G = S; * Sy * --- * Sg. The resulting simplified model is the single element cycle illustrated in
Figure 7. Obviously, our analysis will apply more generally to systems with n service curve elements
in a closed cycle for arbitrary n.

In the next subsection, we study the dynamics of the single element cycle illustrated in Figure 7.

B. Service Curves for a Closed Cycle

It follows from the definition of a throttle and by inspection of Figure 7 that D = AAT =
AN (B+W). Since B > D« G and the window size W (¢) is bounded below by w™™", it thus follows
that

D> ANA(Dx*G+w™n) . (6)

Similarly, since B < D * G and W () < w™®, we obtain

21



D < ANA(Dx*G +w™>). (7)

We would like to obtain minimum and maximum service curve guarantees for the cycle. The main
problem with the equations (6) and (7) which bound the departure process D from the throttle 7°
is that they involve implicit inequalities. We would like to show that there exists solutions to the
above inequalities and obtain tight lower and upper bounds on all such solutions D. We first focus
on a lower bound to D.

To this end we first consider the inequality in (6) with an equality instead, i.e.
D=AN(DxG+w™n) . (8)

Clearly, any solution to (8) also satisfies (6).

Theorem 17: For any given causal arrival process A, there exists a unique departure process D
satisfying (8) and for any departure process D satisfying (6), D > D. Further D may be obtained
by the method of successive approximations, i.e. D = limy, y0o D™ = inf,,>0 D™ where D° = A,
and

D™ = AA (D™ x G+ w™m) forallm >0 . 9)
Proof: See Appendix. O

Next, we use the result above to derive a minimum service curve for the throttle, i.e., represent
the relationship between the exogenous and throttled arrival process in terms of a convolution
operation. Toward this end, define (G + w™")(™) to be the m-fold convolution of G 4+ w™™" with
itself, e.g. (G +w™™)V = G +w™" (G +w™)? = (G + w™") x (G + w™"), and so on. Also,
define (G + w™")(® = §. Define

St = Ao (G + ™)™ (10)

Corollary 18: Any departure process D satisfying (6) also satisfies D > A x Sy, i.e. the throttle

has a minimum service curve of S7.

Proof: Define Sy, := A™_(G™" + w™")™_ In view of Theorem 17, it suffices to show that

D™ m > 0 defined in the successive approximations procedure in Theorem 17 is given by

D™= Ax Sy . (11)

22



This is true for m = 0 by definition of D° . Now assume it is true for some m > 0. Then

D™ = AA(D™x G +w™m)
= AA((A*S7,)*G+w™)
= (A%0)A (A% Sy, * (G +w™m))
= Ax (6 A (ST, * (G +w™™)))

= A*STm+1 .

O

Next, we consider a mazimum service for the throttle. This can be obtained in a manner mirroring
Theorem 17 and Corollary 18. However, as we will see, we may proceed somewhat more directly
in this case. Toward this end, define (G + w™)(™ to be the m-fold convolution of G + w™* with

itself, and (G + w™*)©®) = §. Define
St = Ao(G + w™)™) (12)

Proposition 19: Any departure process D satisfying (7) also satisfies D < A Sr, i.e. the throttle

has a maximum service curve of Sr.

Proof: Define Sy, = A™_ (G +w™*)(™_ 1t suffices to show for all m > 0 we have D < A* Sy,
which we do by induction on m. For m = 0 we have D < A x§ = A from (7). Assume inductively

then that D < A x S . ;From (7) we have

D

IN

AN (D * G+ w™™)

< AA((A*St,)* G+ w™™)

(AN A (Ax* Sz, * (G + w™))

Ax (A (S7, * (G +w™™))

= A*ng+1 .

23



Forward Path

Source Service Curve Destination
A(t)
S -~ j NS
B s
—
W) B
® §
B(t) T —
-
Reverse Path d
Delay R

Fig. 8. A Collapsed Model of End-to-End Window Flow Control.

C. Discussion of End-to-End Window Flow Control

The results of the Section IV-B may be used to analyze end-to-end window flow control as
discussed in Section IV-A. In particular, after a service curve is obtained for the throttle, an end-
to-end service curve can be obtained by convolving the service curves of the elements in the forward
path following the throttle with the service curve of the throttle.

In this subsection, we consider a somewhat simplified model for end-to-end flow control, illustrated
in Figure 8, which is a special case of the model for end-to-end window flow control as presented in
Section IV-A. For this model, we discuss how the end-to-end performance depends on the window
size.

In the model illustrated in Figure 8, we have collapsed all the elements in the forward path between
the throttle and the destination into a single service curve element, with corresponding minimum
and maximum service curves S and S. The reverse path which carries the acknowledgments back
from the source to the throttle is modelled by a lumped system with delay bounded between d7*" and
d7®. Thus the reverse path is modelled by a service curve element with minimum and maximum
service curves given by dgmes and 5d?gm, respectively.

Let us now examine the minimum service curve of the system, say S;,,. The minimum service

curve of the throttle Sy is given by Corollary 18, where we set G = S * dgpaz. Applying Proposition

24



10, the minimum service curve of the system is

Sys = SrxS
= [A%_,(G + w™™)™)] xS
= Ao oS * (G + wmi”)(m)]

= SA[S*(G+w™)A[S*(G+w™)D|A--- .

Now if the the minimum window size w™" is large enough so that S * (G + w™™) > S, then it
follows from the above that S, = S, i.e. the minimum service curve of the system is the same as
it would be if the throttle were not present. The condition that S * (G + w™") > S is equivalent
to w™™ > S @ (S * G)(0), ie.

w™ > sup{S(t) - S*G(t)}

telR

= féllg{S(t) —SxS(t—dg*)}

= k™ (13)

Thus, a minimum window size of k™" is sufficient to guarantee that the system minimum service

curve is S, which would be the minimum service curve without the throttle. It is interesting to note

that the equation (13) for ¥™" has the same form as the equation (4) for the the minimum amount

of network buffering with an open loop strategy. In fact, the two quantities are identical when the
maximum delay in the reverse path, d%**, is zero.

Mirroring the argument above, the maximum service curve of the system in Figure 8 is

Ssys = SA[S* (G +w™) A[S* (G +w™) P A
Arguing as before, if w™® > k™% then S,,s = S, where

ke = sup{S(t) — § * S(t — d™™)} . (14)

teR
For example, suppose the maximum rate that each router encountered by the session would serve

the session is ™ bits per second, and there is a total propagation delay of d™ in the forward

25



direction. In this case, we may set the maximum service curve S to S = R mas * (5d%nm. This implies
that a maximum window size of k™4 = ™% (dP" 4 d7") is necessary for the system to have a
maximum service curve of at least S = R ma= *0gmin. This is consistent with the well known intuition
that a window size equal to the maximum bandwidth delay product is necessary to support the
maximum bandwidth.

Suppose that a network provides a minimum service curve of S to a session. Let us now briefly
compare the alternatives of open loop, rate based flow control, and closed loop, window based flow
control. The source could either employ an open loop strategy whereby a regulator is used at the
entry point of the network, or end-to-end window flow control strategy as above. In order to prevent
buffer overflow with the open loop strategy, assuming a buffer allocation of b,,,,, the envelope F
of the access regulator must satisfy E(t) < S(t) + bmaz- Therefore the throughput of the access
regulator cannot be greater than the asympotic slope of the minimum service curves of the routers.
Thus, with the open loop strategy, the allocation of even very large buffers to the session will
not increase the throughput. On the other hand, with window flow control, increasing the buffers
allocated to the session allows a larger window size, which enables the possibility of supporting a
greater throughput than the nominal amount specified by the minimum service curves.

If the network uses hop-by-hop flow control, the buffering requirements can be reduced somewhat.

We discuss this next.

D. Hop-by-Hop Window Flow Control

Consider the system depicted in Figure 9, which models a network that employs hop-by-hop
window flow control. In particular, at each hop a throttle is used, and the throttle is controlled
by the departure process from the router at the next hop. The router at hop 7 is modelled by
a service curve element with minimum and maximum service curves Sroyteri and S”muter,i. For
simplicity of exposition®, we assume that the departure process of the router at hop 7 encounters a
fixed propagation delay dg, before reaching the throttle at hop ¢ + 1. Similarly, acknowledgments
generated by the departure process of the router at hop ¢ + 1 encounter a fixed propagation delay

of dg, before reaching the throttle at hop 7. The throttle at hop ¢ uses the window process W,

8More elaborate models can easily be handled.

26



where we assume that 0 < w™" < W;(t) < w™?®. Note that the buffer requirement at router 4 is
min{W;_1(t), W;(t)}, 2 <i < n — 1, where n is the number of hops.

It is possible to analyze this system in the context of a general fork-join queueing model, and we
refer the reader to [1] for details on this approach. Here, we analyze the system by exploiting the
robustness of service curve definitions, and again by lumping network elements using Proposition
10. In particular, we shall iteratively use our analysis of the basic model in Figure 7.

Note that the throttle at hop 7 is contained in the cycle of elements which determine the throttle
process at hop ¢+ — 1. Thus, in order to determine a service curve for the throttle at hop ¢z — 1,
we must first determine a service curve for the throttle at hop 7. Since there is no throttle at the
last hop, we may analyze the throttle at hop n — 1 using the same method we used to analyze the
simple cycle in Figure 7. Once a service curve for the throttle at hop n — 1 is determined, we can
incorporate that into the analysis of the throttle at hop n — 2. By continuing in this manner, we
may determine the service curves for each of the throttles, and then use Proposition 10 to determine
the end-to-end service curve.

For example, suppose we let S; = Srouter,i * Srouteri+1 * Ody, and S; = Sroutersi * Srouter,i+1 * Oy -

Parallel to equations (13) and (14), define

ki = sup{S(t) — S; * Si(t — dg,)}

teRR
and
ki = sup{S;(t) — Sy * Si(t — dg,)} -
teR
Source Destination
del del del
Srouter,l ¥ d1:1 Srouter,2 ¥ dFZ Srouter,n-l & an—l Srouter,n
| B B |
@» »j», —— »jT», - — »jﬁi —>jT>®
A(t) l ) l )
W, (1) WL (t) e K Wn_ f[) 7 K g
N — \/\ //7 / mEn \///7 ///
\,47 - — - — - __ P \*7 <7777/ (7/\747 - — — — — — 7
del del del
& &y ay dy Y&

Fig. 9. An n-hop session with hop-by-hop window flow control.

27



Destination 2

12—

Source s,
A(t) D(t) Destination 1
S e
Sy

W) W)

B (1)
1

g /i
na

B (1)
2

Fig. 10. A multicast session with window flow control.

By following the procedure outlined above, if for all i < n and all ¢ we have k™" < W;(t) <
kme® it follows that the end to end service curves are identical to that obtained with no throttles
present. In other words, in this case the end-to-end minimum and maximum service curves are
ddp * Srouter, ¥ Srouter,2* * * * ¥ Srouter,n a0d 04, * grouter,l * grouter,Z LERRE S grouter,na where dp = ?;11 dr,
is the total forward propagation delay. If we assume that each router supports a maximum service
curve of Syoyteri = Rymes, then we have k%% = ;™% (dp, + dg,), which is the maximum bandwidth
delay product over hop i. Thus, it is seen that in order to enable sessions to avail of excess
bandwidth, smaller window sizes, and hence smaller buffer requirements, are required as compared
to end-to-end window flow control. On the other hand, hop-by-hop flow control requires the network

to actively participate in the flow control process by generating acknowledgments at each hop.

E. Window Flow Control with Multicast

As another application of the analysis of Section IV-B, consider the system illustrated in Figure
10, where data generated by a source is delivered to two destinations via distinct data paths. The
data is passed through a throttle which is governed by feedback from each of the destinations.
Specifically, the arrival process to the throttle is denoted by A and the departure process is denoted
by D. The same departure process is fed to two network elements, 1 and 2. The 7** network element

has departure process B;, and guarantees minimum and maximum service curves S; and S;. The

28



throttle insures that at most W; bits are stored in network element ¢. More specifically, the throttle
operates such that

D=AN(By+Wi)A(By+ W) .

Assume that the window sizes are bounded according to wi™" < W;(t) < w™®, where w™" > (.
Using the definition of a minimum service curve and the distributive property of convolution we

have

AN (D * Sy + w™) A (D * Sy + wi™)

AN (D * (S + w™™)) A (D * (Sy + wir™))
= AA(D*[(Sy +w™™) A (Sy + wi™)])

AN (D * (G +w™™))

AN (D *G+w™™)

where w™" = min{w" wP*"} and G = [(S; + W) A (S + wP¥™)] — w™". 1t is easy to verify
that G is a causal process, so that we obtain exactly the same form as in (6). The minimum service
curve for the throttle can then be derived as before. Similarly, using the definition of a maximum

service curve and the distributive property of convolution, we have
D < AAN(D*G+w™™),

where G = [(S1 +w*) A (So +w5®)] —w™®  and w™* = min{w** w5}, Hence the maximum
service curve of the throttle can be obtained as before.

Obviously, this generalizes easily to more than two destinations. Furthermore, it is possible to
analyze a large class of complex configurations of network elements by lumping together network

elements as in the previous subsections, using the analysis of the basic feedback model in Figure 7.
V. CONCLUSIONS

In this paper, we have presented a new mathematical model, the service curve element, to describe
the operation of a variety of network elements. We have obtained performance bounds for a flow

traversing a service curve element. While some of these bounds are not new, the proofs here are

29



more elegant in using a simple calculus based on the convolution operation. It is apparent that the
framework is related to the theory of linear filtering, where the concept of a service curve here is
somewhat analogous to the impulse response of a linear system. This analogy is discussed at more
length in [10].

We have analyzed unicast guaranteed sessions as a series of service curve elements, and obtained
bounds on end-to-end delay and buffering requirements. This paper also suggested how regulation
may be used with the network to reduce resource requirements for a session without compromising
negotiated performance. We then considered the adaptive service, which uses window flow control.
This service is appropriate for sessions that may wish to send larger amounts of traffic into the
network when resources are lightly loaded, while reserving a certain amount of bandwidth at all
times. In modelling such a session, we used a cycle of service curve elements with a throttle to
restrict the traffic arriving into the network. We derived novel performance bounds for such a
session (unicast or multicast), and used these to consider tradeoffs between window size and the
performance of the adaptive session. Finally, we considered hop-by-hop windows as a means of

further reducing buffering requirements within the network.
APPENDIX
Proof of Lemma 3. We have

[(Ax(Bo(O)]xC = Ax[(B@C)x*(]

> AxB.

Since the smallest function H satisfying H * C > A x B is (A x B) @ C, it thus follows from the
above that Ax (B@ C) > (AxB)oC. O
Proof of Lemma 4. By Lemma 3, we have (BOB)*(B@B) > [(BoB)*B|oB > BoB. O
Proof of Proposition 15. The end-to-end minimum service curve of the system with a regulator
inserted before any of the elements is S * E. Thus, if D is the departure process from the entire

system, corresponding to the arrival process A, we have
D > Ax(SxFE)

30



— AxS+[(B+8)o (B*S)

— (A%B)*S*[(B*S) 2 (Bx*S)]
— Ax(B+S)[(B*S) 2 (Bx*S)
> AxBx*S

= AxS.

Thus, the end-to-end minimum service curve is unchanged with the insertion of a regulator before
any of the elements. O

Proof of Theorem 17. Let { D% a € A} be the set of causal processes satisfying the inequality
D* > AN (D x G +w™™"). (15)

Clearly, the set is non-empty as D = A satisfies (15). Next, it is easy to verify that D :=inf,c 4 D*
is a causal process that also satisfies (15). We claim that in fact D satisfies (8). Assume not. Define
D' to be

D':= AN (Dx*G +w™n) . (16)

First, it is easily verified that D' is a causal process. Also, since D satisfies (15) we have D' < D.

Thus, replacing D with D’ in (16), we have

Thus, it follows that D’ also satisfies (15). By assumption, however, D does not satisfy (8), and
hence D'(t) < D(t) for at least one value of . This contradicts the minimality of D as a solution
o (15) and establishes that D satisfies (8).

Next, we establish that there is a unique causal process D that satisfies (8). Assume not. Let D

and D' be two different processes satisfying (8). Let
to == inf{t € R : D(t) # D'(t)}.

Note that to > 0 as D(t) = D'(t) = 0 for all ¢ < 0. By the right continuity of D and D', there
exists a > 0 such that for all ¢ € [to, %, + a), D(t) < D(to) +w™" and D'(t) < D'(ty) + w™". We

31



now show that D(t) = D'(t) for all t € [ty, to + ), which contradicts the definition of ¢y, and hence

establishes uniqueness. For ¢ € [ty, to + ) we have

D(t)

A(t) A inf [D(1) + G(t — 7) + w™™] A inf [D(1) + G(t — 7) + w™™"]

A(t) A inf [D(1) + G(t — 7) + w™™"]

where the third equality above holds because inf, >, [D () +G(t—7)+w™"] > D(t;)+w™" > D(t),

the fourth because D(7) = D'(r) for T < to, and the last by interchanging D and D’ in the preceeding

steps.

Finally, we show that D™ m > 0 defined in the theorem converge to this unique solution. It is

easy to establish by induction that D™, m > 0 is a non-increasing sequence and hence has a limit

D*® = lim,, e Dm = inf,,,>0 Dm, Thus,

D® = inf D™ = inf D™*!

m>0 m>0

= inf[AA (D™ %G + w™™)]

= AN ([in>f0[)m] * G+ Winin)

= AN (D®*G +w™n).

REFERENCES

[1] R. Agrawal and R. Rajan. Performance bounds for guaranteed and adaptive services. Technical
Report RC 20649, IBM Research Division, 1996.

[2] J. C. R. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms. In Proc. ACM
SIGCOMM’96 Conference, pages 143-156, Stanford University, CA, August 1996.

[3] C.-S. Chang. Stability, queue length, and delay of deterministic and stochastic queueing net-
works. IEEFE Trans. on Automatic Control, 39:913-931, May, 1994.

[4] C.-S. Chang. On deterministic traffic regulation and service guarantee: a systematic approach
by filtering. Proceedings of IEEE INFOCOM’97.

32



[5] R. L. Cruz. A calculus for network delay, part I: Network elements in isolation. IEEE Trans.
Inform. Theory, 37:114-131, 1991.

[6] R. L. Cruz. A calculus for network delay, part II: Network analysis. IEEE Trans. Inform.
Theory, 37:132-141, 1991.

[7] R. L. Cruz. Service burstiness and dynamic burstiness measures: a framework. Journal of
High Speed Networks, vol. 1, no. 2, pp. 105-127, 1992.

[8] R. L. Cruz. Quality of service guarantees in virtual circuit switched networks. IEEE Journal
on Selected Areas in Communications, 13:1048-1056, August 1995.

[9] R. L. Cruz. SCED+: Efficient management of quality of service guarantees. To appear in Proc.
INFOCOM’98, IEEE Computer Society Press, March, 1998.

[10] R. L. Cruz and C. M. Okino. Service guarantees for window flow control. Proceedings of the
34th Allerton Conference on Communication, Control, & Computing , Monticello, IL, October,
1996.

[11] L. Georgiadis, R. Guérin, and A. Parekh. Optimal multiplexing on a single link: delay and
buffer requirements. Proc. IEEE INFOCOM’94, vol. 2, 1994, pp. 524-532 also to appear in
IEEFE Transactions on Information Theory.

[12] L. Georgiadis, R. Guerin, V. Peris, and R. Rajan. Efficient support of delay and rate guarantees
in an internet. In Proc. ACM SIGCOMM’96 Conference, pages 106-116, Stanford University,
CA, August 1996.

[13] S.J. Golestani. Congestion-free communication in high-speed packet networks. IEEE Trans.
on Communications, vol. 39, no. 12, Dec. 1991, pp. 1802-1812.

[14] S. J. Golestani. A self-clocked fair queueing scheme for broadband applications. In Proceedings
of IEEE INFOCOM’94, pages 636-646, Toronto, Canada, June 1994.

[15] P. Goyal, S. S. Lam, and H. M. Vin. Determining end-to-end delay bounds in heterogeneous
networks. ACM/Springer-Verlag Multimedia Systems Journal, 1996. To appear.

[16] A. Hung and G. Kesidis. Bandwidth scheduling for wide-area ATM networks using virtual
finishing times. IEEE/ACM Transactions on Networking, vol. 4., no. 1, pp . 49-54, Feb. 1996.

[17] T. Konstantopoulos and V. Anantharam. Optimal flow control schemes that regulate the
burstiness of traffic. IEEE/ACM Transactions on Networking, 3(4):450-458, August 1995.

[18] J.-Y. Le Boudec. Network calculus made easy. preprint, 1996.

[19] J. Liebeherr, D.E. Wrege, and D. Ferrari. Exact admission control for networks with a bounded
delay service. IEEE/ACM Transactions on Networking,, vol. 4 no. 6, December 1996, pp. 885-
901.

[20] A. K. Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated Ser-
vices Networks. PhD thesis, Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology, Cambridge, MA 02139, February 1992. No. LIDS-TH-2089.

[21] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow control in

integrated services networks: The single node case. IEEE/ACM Transactions on Networking,
1(3):344-357, June 1993.

33



[22] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow control in
integrated services networks: The multiple node case. IEEE/ACM Transactions on Networking,
2(2):137-150, April 1994.

[23] S. Shenker and C. Partridge. Specification of guaranteed quality of service. Internet Draft
draft-ietf-intserv-guaranteed-svc-03.txt, Nov 1995.

[24] H. Sariowan, R. L. Cruz, and G. C. Polyzos. Scheduling for quality of service guarantees via
service cruves. Proc. International Conference on Computer Communications and Networks
95 (ICCCN’95), Sept. 1995, pp. 512-20.

[25] H. Sariowan. A service-curve approach to performance guarantees in integrated-service net-
works. Ph.D. Dissertation in Electrical and Computer Engineering, University of California,
San Diego, June 1996.

[26] D. Stiliadis and A. Varma. Latency-rate servers: A general model for analysis of traffic schedul-
ing algorithms. In Proc. IEEE INFOCOM’96, pages 111-119, San Francisco, March 1996.

[27] L. Stoica, H. Zhang, and T.S. Eugene Ng. A hierarchical fair service curve algorithm for link-
sharing, real-time, and priority services. Proceedings of the 1997 ACM SIGCOMM Conference.

(28] B. Suter, T. V. Lakshman, D. Stiliadis, and A. K. Choudhury. Design considerations for
supporting TCP with per-flow queueing. preprint, 1998.

[29] J. Turner. New directions in communications (or Which way to the information age?). IEEE
Communications Magazine, Vol 24., No 10, October 1986.

[30] J. Wroclawski. Specification of the controlled-load network element service. Internet Draft
draft-ietf-intserv-ctrl-load-sve-01.txt, Nov 1995.

[31] H. Zhang and D. Ferrari. Rate-controlled static priority queueing. In Proceedings of IEEE
INFOCOM’93, pages 227-236, San Francisco, April 1993.

[32] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High Speed Networks,
3(4):389-412, 1994.

[33] L. Zhang. Virtual clock: A new traffic control algorithm for packet switching networks. In
Proceedings of the ACM SIGCOMM’90, pages 19-29, Philadelphia, PA, Sept. 1990.

34



